REVIEW ARTICLE

Effect of antispasmodic agents, alone or in combination, in the treatment of Irritable Bowel Syndrome: Systematic review and meta-analysis

M.A. Martinez-Vázquez, G. Vázquez-Elizondo, J.A. González-González, R. Gutiérrez-Udave, H.J. Maldonado-Garza, F.J. Bosques-Padilla*

Gastroenterology Unit, Internal Medicine Department, Dr. José E. González University Hospital, Monterrey, N.L., Mexico

Received 22 October 2011; accepted 28 April 2012
Available online 5 June 2012

Abstract

Introduction: Irritable bowel syndrome (IBS) is characterized by recurrent abdominal pain, bloating, and changes in bowel habit.

Aims: To determine the clinical effectiveness of the antispasmodic agents available in Mexico for the treatment of IBS.

Methods: We carried out a systematic review and meta-analysis of randomized controlled clinical trials on antispasmodic agents for IBS treatment. Clinical trials identified from January 1960 to May 2011 were searched for in MEDLINE, the Cochrane Library, and in the ClinicalTrials.gov registry. Treatment response was evaluated by global improvement of symptoms or abdominal pain, abdominal distention/bloating, and frequency of adverse events. The effect of antispasmodics vs placebo was expressed in OR and 95% CI.

Results: Twenty-seven studies were identified, 23 of which fulfilled inclusion criteria. The studied agents were pinaverium bromide, mebeverine, otilonium, trimethobutine, alverine, hyoscine, alverine/simethicone, pinaverium/simethicone, fenoverine, and dicyclomine. A total of 2585 patients were included in the meta-analysis. Global improvement was 1.55 (CI 95%: 1.33 to 1.83). Otilonium and the alverine/simethicone combination produced significant values in global improvement while the pinaverium/simethicone combination showed improvement in bloating. As for pain, 2394 patients were included with an OR of 1.52 (IC 95%: 1.28 to 1.80), favoring antispasmodics.

Conclusions: Antispasmodics were more effective than placebo in IBS, without any significant adverse events. The addition of simethicone improved the properties of the antispasmodic agents, as seen with the alverine/simethicone and pinaverium/simethicone combinations.

© 2011 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

* Corresponding author: Hospital Universitario Dr. José E. González, Monterrey, N.L., Mexico. Ave. Madero y Gonzalitos S/N Colonia Mitas Centro, Monterrey, Nuevo León, Mexico. Z.P. 64460. Tel.: +(52) (81) 8333 3664; fax: +(52) (81) 8348 6068.
E-mail address: fjosbosques58@hotmail.com (F.J. Bosques-Padilla).
Efecto de los antiespasmódicos solos o combinados en el tratamiento del Síndrome de Intestino Irritable: revisión sistemática y meta-análisis

Resumen

Introducción: El Síndrome de Intestino Irritable (SII) se caracteriza por distensión y dolor abdominal recurrentes, además de cambios en el patrón defecatorio. Objetivo: Definir la utilidad clínica de los antiespasmódicos disponibles en México para el tratamiento del SII. Métodos: Se realizó una revisión sistemática y meta-análisis de ensayos clínicos controlados aleatorios de fármacos antiespasmódicos para el tratamiento del SII. Se identificaron los ensayos de enero 1960 a mayo de 2011, para esto se realizó una búsqueda bibliográfica en MEDLINE, el Cochrane Library y en el sitio de registro clinicaltrials.gov. Se tomaron como puntos a evaluar: evaluación global, mejoria de los síntomas, como dolor y distensión abdominal, así como los efectos adversos del tratamiento. El efecto de los fármacos antiespasmódicos vs placebo se expresó como RM e IC 95%. Resultados: Veintisiete estudios fueron identificados, de los cuales 23 cumplieron los criterios de inclusión. Los medicamentos estudiados fueron pinaverio, mebeverina, otilonio, trimetubina, alverina, hioscina, alverina/simeticona, pinaverio/simeticona, fenoverina y dicyclomina. Un total de 2585 pacientes fueron incluidos en el meta-análisis. La mejoría global fue de 1,55 (IC 95%: 1,33 a 1,83). Otilonio y alverina/simeticona tienen resultados que favorecen la mejoría global, la combinación de pinaverio/simeticona mostró mejoría en el alivio de la distensión. Respecto a mejoría del dolor, se incluyeron 2.394 con un OR de 1,52 (IC 95%: 1,28 a 1,80) a favor de los antiespasmódicos en general. Conclusiones: Los antiespasmódicos son más eficaces que el placebo en el SII, sin efectos secundarios significativos. La adición de simeticona parece que mejora las propiedades de los antiespasmódicos, tal es el caso de las combinaciones de alverina/simeticona y pinaverio/simeticona.

© 2011 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. Todos los derechos reservados.

Introduction

Irritable bowel syndrome (IBS) is a frequent gastrointestinal functional disorder in the western world and Mexico is not an exception.1 It is characterized by recurrent abdominal pain, bloating, and defeation disorders.2,3 The pathophysiology of IBS is not yet fully understood4,5; but increased pain sensitivity and altered small bowel and colon motility are main factors contributing to IBS symptoms. When compared with healthy controls, IBS patients demonstrate both visceral hypersensitivity and hyper-reactive motility.6 Antispasmodic agents are believed to reduce pain associated with IBS through the inhibition of contractile pathways in the gut wall and to improve bowel habits by decreasing colonic transit time, therefore reducing stool passage frequency. Previous meta-analyses7–8 have proven the usefulness of antispasmodics alone in the treatment of IBS. Nonetheless, antispasmodic availability differs among countries. In the United States, the American College of Gastroenterology review concluded that data were insufficient for making a recommendation as to the effectiveness of the available antispasmodic agents.9 In Europe for example, the utility of the available antispasmodics has been evaluated,10 however, there is no information regarding the effectiveness of those available in Latin America. Therefore, we conducted a systematic review of antispasmodic agents, both alone and in combination, for the treatment of IBS, and carried out a meta-analysis of the data obtained. This was done to determine the clinical effectiveness of the available antispasmodic agents as sole formulations or in combination with simethicone, and to update the current information on IBS treatment in Mexico.

Methods

To determine the antispasmodic agents that are available in Mexico, we reviewed the therapeutic index of the Dictionary of Medical Specialties (Diccionario de Especialidades Médicas), PLM®, Mexico-2011. We focused the search on section A3 of the index that lists all the agents for functional gastrointestinal disorders. The identified antispasmodics were further searched for in a systematic review conducted in MEDLINE, Cochrane Library, and ClinicalTrials.gov from January 1960 to May 2011 and in abstracts presented at the Digestive Disease Week (DDW) and the Mexican Disease Week (Semana Nacional de Gastroenterología) from 2010-2011. The agents listed in Table 1 were analyzed. Accordingly, the search terms were Irritable Bowel Syndrome and the following antispasmodics: pinaverium bromide, mebeverine, otilonium, trimetubine, alverine, hioscine, alverine/simeticona, pinaverium bromide/simethicone, alverine/simethicone, fenoverine, and dicyclomine. Two physicians conducted the search, then reviewed the results and resolved the existing discrepancies. Figure 1 explains the selection process for including papers in the meta-analysis. Articles selected
Table 1 Clinical trials on antispasmodics that fulfilled inclusion criteria.

<table>
<thead>
<tr>
<th>Author and year</th>
<th>Medication</th>
<th>Treatment period (weeks)</th>
<th>Diagnostic criteria</th>
<th>Jadad score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levy 1977</td>
<td>Pinaverium bromide 150 mg</td>
<td>2</td>
<td>Clinical</td>
<td>3</td>
</tr>
<tr>
<td>Delmont 1981</td>
<td>Pinaverium bromide 150 mg</td>
<td>4</td>
<td>Clinical</td>
<td>4</td>
</tr>
<tr>
<td>Connell 1965</td>
<td>Mebeverine 400 mg</td>
<td>12</td>
<td>Clinical</td>
<td>5</td>
</tr>
<tr>
<td>Tasman-Jones 1973</td>
<td>Mebeverine 400 mg</td>
<td>4</td>
<td>Clinical</td>
<td>4</td>
</tr>
<tr>
<td>Berthelot 1981</td>
<td>Mebeverine 400 mg</td>
<td>8</td>
<td>Clinical</td>
<td>4</td>
</tr>
<tr>
<td>Kruis 1986</td>
<td>Mebeverine 400 mg</td>
<td>16</td>
<td>Clinical</td>
<td>4</td>
</tr>
<tr>
<td>Secco 1983</td>
<td>Mebeverine 400 mg</td>
<td>4</td>
<td>Clinical</td>
<td>4</td>
</tr>
<tr>
<td>Enck 2005</td>
<td>Mebeverine Not reported</td>
<td>4</td>
<td>Clinical</td>
<td>4</td>
</tr>
<tr>
<td>Barbier 1981</td>
<td>Otilonium 320 mg</td>
<td>2</td>
<td>Clinical</td>
<td>3</td>
</tr>
<tr>
<td>Clave 2011</td>
<td>Otilonium 120 mg</td>
<td>15</td>
<td>Rome II</td>
<td>5</td>
</tr>
<tr>
<td>Baldi 1991</td>
<td>Otilonium 120 mg</td>
<td>4</td>
<td>Clinical</td>
<td>2</td>
</tr>
<tr>
<td>Bataglia 1998</td>
<td>Otilonium 120 mg</td>
<td>15</td>
<td>Clinical</td>
<td>3</td>
</tr>
<tr>
<td>Castiglione 1991</td>
<td>Otilonium 120 mg</td>
<td>12</td>
<td>Clinical</td>
<td>2</td>
</tr>
<tr>
<td>Glende 2002</td>
<td>Otilonium 120 mg</td>
<td>15</td>
<td>Clinical</td>
<td>3</td>
</tr>
<tr>
<td>Clave 2011</td>
<td>Otilonium 120 mg</td>
<td>15</td>
<td>Rome II</td>
<td>5</td>
</tr>
<tr>
<td>Ritchie 1979</td>
<td>Hyoscine 40 mg</td>
<td>4</td>
<td>Clinical</td>
<td>4</td>
</tr>
<tr>
<td>Nigam 1994</td>
<td>Hyoscine 40 mg</td>
<td>4</td>
<td>Clinical</td>
<td>3</td>
</tr>
<tr>
<td>Shafer 1990</td>
<td>Hyoscine 30 mg</td>
<td>4</td>
<td>Clinical</td>
<td>3</td>
</tr>
<tr>
<td>Fielding 1980</td>
<td>Trimebutine 600 mg</td>
<td>24</td>
<td>Clinical</td>
<td>3</td>
</tr>
<tr>
<td>Moshal 1979</td>
<td>Trimebutine 600 mg</td>
<td>4</td>
<td>Clinical</td>
<td>4</td>
</tr>
<tr>
<td>Lutteke 1975</td>
<td>Trimebutine 600 mg</td>
<td>3 (days)</td>
<td>Clinical</td>
<td>2</td>
</tr>
<tr>
<td>Lutteke 1980</td>
<td>Trimebutine 300 mg</td>
<td>3 (days)</td>
<td>Clinical</td>
<td>2</td>
</tr>
<tr>
<td>Mitchell 2002</td>
<td>Alverine 120 mg</td>
<td>12 (days)</td>
<td>Clinical</td>
<td>?</td>
</tr>
<tr>
<td>Wittmann 2010</td>
<td>Alverine/simethicone 60/300 mg</td>
<td>4</td>
<td>Rome III</td>
<td>5</td>
</tr>
<tr>
<td>Page 1981</td>
<td>Dicycloverine 160 mg</td>
<td>2</td>
<td>Clinical</td>
<td>4</td>
</tr>
<tr>
<td>Remes-Troche</td>
<td>Pinaverium/simethicone 200/600 mg</td>
<td>12</td>
<td>Rome III</td>
<td>5</td>
</tr>
</tbody>
</table>

The table shows all trials initially considered for analysis. Those with a Jadad score below 3 were subsequently eliminated. Total daily dosages are described.

for review were those in which the authors employed the same inclusion criteria. Afterwards, the studies were reexamined to confirm that they fulfilled the inclusion criteria. Finally, the meta-analysis was conducted according to predetermined protocols and following the standard recommendations proposed by Sack et al. These recommendations consist of a rigorous review which includes the aspects listed in Table 2. When information was lacking, we contacted the authors for its completion.

Inclusion criteria

The following criteria were used for selecting the studies: Randomized controlled trials that included subjects over 16 years of age, a diagnosis of IBS based on accepted clinical criteria (Rome I, II or III), or diagnostic criteria supplemented with specific investigations when needed. Antispasmodic agents versus placebo studies were included when there was a minimum 14-day treatment period. Treatment response was evaluated by the global improvement

![Figure 1](image-url) Review process flowchart.
Table 3 Jadad Score Items.

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was the study described as randomized (this includes words such as randomly, random, and randomization)?</td>
<td>0/1</td>
</tr>
<tr>
<td>Was the method used to generate the sequence of randomization described and appropriate (table of random numbers, computer-generated, etc.)?</td>
<td>0/1</td>
</tr>
<tr>
<td>Was the study described as double blind?</td>
<td>0/1</td>
</tr>
<tr>
<td>Was the method of double blinding described and appropriate (identical placebo, active placebo, dummy, etc.)?</td>
<td>0/1</td>
</tr>
<tr>
<td>Was there a description of withdrawals and dropouts?</td>
<td>0/1</td>
</tr>
<tr>
<td>Deduct one point if the method used to generate the sequence of randomization was described but was inappropriate (patients were allocated alternately, or according to date of birth, hospital number, etc.)*</td>
<td>-1</td>
</tr>
<tr>
<td>Deduct one point if the study was described as double blind but the method of blinding was inappropriate (e.g., comparison of tablet vs. injection with no double dummy)*</td>
<td>-1</td>
</tr>
</tbody>
</table>

0=No; 1=Yes; -1=Point deduction*

of symptoms or abdominal pain (reported by patients or physicians), abdominal distention/bloating, and frequency of adverse events. Methodological quality was evaluated using the Jadad scale12 (Table 3). This scoring scale evaluates each trial according to the quality of the scientific description of the randomization method. The scale ranges from 0 to 5 points: A score of 2 or less is considered low quality and 3 or higher is considered high quality.12-14 The present review only included studies with a Jadad score of 3 or above.

Statistical analysis

The Critical Appraisal Skills Program (CASP) was used with Excel for Windows 2000 (Microsoft, USA) for calculating the meta-analysis, and the Comprehensive Meta-Analysis V2 by Biostat, Inc. was also used. Each analysis was run in accordance with standard methodological procedures using the following determinations: a test of heterogeneity15 between active versus control group results. This was considered significant when p<0.10 and/or the value of I^2 >25%. Antispasmodic efficacy was defined according to the Peto method.16 In addition, a funnel plot graph17 was used to evaluate publication bias. Finally, the Number Needed to

![Figure 2 Publication bias assessment funnel plot for trials considered in overall improvement.](image)

Treat (NNT)18 was determined using the formula NNT=1/TBE (1-OR)/TBE divided by TBE (1-TBE) (1-OR).

Results

Included randomized clinical trials

A total of 450 publications were identified from 1960 to 2011. Twenty-seven studies fulfilled the inclusion criteria and 23 were included in the meta-analysis after the Jadad score was determined. Nine specific agents were tested as monotherapies, plus the alverine/simethicone and pinaverium/simethicone combinations. For the global assessment endpoint, a total of 2585 patients were included; 1297 were allocated to active treatment groups and 1288 to the placebo group. Of these trials, 6 studied mebeverine, 7 otilonium, 3 hyoscine, 2 trimebutine, one alverine plus simethicone (alverine/simethicone), one dicyclomine, 2 pinaverium bromide, and one pinaverium bromide plus simethicone (pinaverium bromide/simethicone). Despite the systematic search for trials with high quality criteria, not all trials reported the effect on all the studied outcomes, i.e., global assessment, pain, abdominal distention/bloating, and adverse events, and therefore a different number of trials was considered for each tested variable.

Heterogeneity testing was not significant (p>0.05), allowing the use of the Peto method and fixed effects. Publishing bias evaluation was tested using the funnel plot shown in Figures 2 and 3.

Meta-analysis

Patient global assessment

Of the 27 trials included for the global assessment analysis, only 18 had sufficient data for consideration. The total sample included 2585 patients, with 1297 allocated to the treatment group. Global assessment with an OR of 1.55 and a 95%CI of 1.33 to 1.83 was confirmed for all antispasmodics (Fig. 4). Based on the Peto method, a significant difference favoring the alverine/simethicone combination and otilonium was observed. The OR for otilonium was 2.03 (95% CI 1.49-2.77), and was 1.76 (95%CI 1.18-2.61) for the alverine/simethicone combination. The OR for pinaverium bromide was 1.48 (95%CI 0.95-4.63), as shown in Figure 4.
efficacy is borderline with an OR of 1.455 (95% CI 1.17-1.81), there is a consistent trend of antispasmodics as a group to relieve abdominal distention/bloating. The combination pinaverium/simethicone showed an OR of 1.455 (95% CI 1.11-9.91).

Rate of adverse events (safety)

The OR for the antispasmodic treatment group was 0.738 (95% CI 0.54-0.98). Results are shown in Figure 7. Previous meta-analyses\(^7\),\(^8\),\(^19\) have shown antispasmodic treatments to be safe. All trials included in the present meta-analysis consistently showed safety, corroborating the safe profile for these agents demonstrated in the most recent reports.\(^20\),\(^21\)

Number Needed to Treat (NNT)

The NNT was calculated only for the antispasmodics showing a significant value of 10 in global assessment (95% CI 6.0-41.0). The NNT for global improvement was 7 for Otilonium and 8 for Alverine/simethicone and 8 and 11 for pain relief, respectively.

Discussion

Decision-making in medical practice today often requires answers to concrete questions. In 1976 Glass\(^22\) proposed a set of different statistical tests in the meta-analysis for quantitative and qualitative analyses based on results from independent trials. Previous studies mention the discrepancy among different trials due to a lack of uniformity in diagnostic criteria. In the present analysis, we decided to remove those trials that had a Jadad score below 3, in other words, low quality (Table 3). We felt that an analysis of low quality trials could be a significant source of bias for the interpretation of results.

Figure 3 Publication bias assessment funnel plot of trials considered for pain relief.

Percentage of patients with abdominal pain improvement

A total of 13 trials contained enough data to evaluate pain relief. They included a total of 2394 patients, 1053 allocated to otilonium and 409 to the alverine/simethicone combination treatment; both providing the highest number of patients for a particular therapy. Antispasmodics tested for abdominal pain relief showed an OR of 1.52 (95%CI 1.28 to 1.80), favoring these agents when compared with placebo. Complete results are shown in Figure 5.

Percentage of patients with abdominal distention/bloating relief

The results for the efficacy analysis of abdominal distention/bloating relief are shown in Figure 6; however, few trials appropriately report this effect. Although

Table 1

<table>
<thead>
<tr>
<th>Drug</th>
<th>Study</th>
<th>Statistics for each study</th>
<th>odds ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>p-Value</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Averine/s</td>
<td>Wittman</td>
<td>Averine/s</td>
<td>1.761</td>
<td>1.187</td>
<td>2.614</td>
<td>0.005</td>
<td>125/200</td>
<td>96/198</td>
</tr>
<tr>
<td>Averine/s</td>
<td>Averine/s</td>
<td>Averine/s</td>
<td>1.761</td>
<td>1.187</td>
<td>2.614</td>
<td>0.005</td>
<td>125/200</td>
<td>96/198</td>
</tr>
<tr>
<td>Dicycloverine</td>
<td>Page</td>
<td>Dicycloverine</td>
<td>0.388</td>
<td>0.175</td>
<td>0.861</td>
<td>0.030</td>
<td>21/48</td>
<td>33/49</td>
</tr>
<tr>
<td>Dicycloverine</td>
<td>Page</td>
<td>Dicycloverine</td>
<td>0.388</td>
<td>0.175</td>
<td>0.861</td>
<td>0.030</td>
<td>21/48</td>
<td>33/49</td>
</tr>
<tr>
<td>Hyoscine</td>
<td>Ngam</td>
<td>Hyoscine</td>
<td>1.928</td>
<td>1.034</td>
<td>3.594</td>
<td>0.039</td>
<td>38/84</td>
<td>25/84</td>
</tr>
<tr>
<td>Hyoscine</td>
<td>Riche</td>
<td>Hyoscine</td>
<td>2.021</td>
<td>0.889</td>
<td>4.509</td>
<td>0.093</td>
<td>22/48</td>
<td>14/44</td>
</tr>
<tr>
<td>Hyoscine</td>
<td>Shaler</td>
<td>Hyoscine</td>
<td>1.332</td>
<td>0.889</td>
<td>2.016</td>
<td>0.176</td>
<td>106/182</td>
<td>91/178</td>
</tr>
<tr>
<td>Hyoscine</td>
<td>Shaler</td>
<td>Hyoscine</td>
<td>1.561</td>
<td>1.138</td>
<td>2.146</td>
<td>0.006</td>
<td>186/374</td>
<td>136/310</td>
</tr>
<tr>
<td>Mebeverine</td>
<td>Berchet/Mebereverine</td>
<td>Mebeverine</td>
<td>2.260</td>
<td>0.704</td>
<td>7.254</td>
<td>0.170</td>
<td>31/36</td>
<td>24/33</td>
</tr>
<tr>
<td>Mebeverine</td>
<td>Connel</td>
<td>Mebeverine</td>
<td>9.389</td>
<td>0.239</td>
<td>45.659</td>
<td>0.001</td>
<td>1/22</td>
<td>102</td>
</tr>
<tr>
<td>Mebeverine</td>
<td>Erics</td>
<td>Mebeverine</td>
<td>0.188</td>
<td>0.065</td>
<td>0.543</td>
<td>0.002</td>
<td>8/32</td>
<td>16/24</td>
</tr>
<tr>
<td>Mebeverine</td>
<td>Kruis</td>
<td>Mebeverine</td>
<td>0.428</td>
<td>0.151</td>
<td>1.213</td>
<td>0.110</td>
<td>6/40</td>
<td>12/40</td>
</tr>
<tr>
<td>Mebeverine</td>
<td>Tarasmann-J.</td>
<td>Mebeverine</td>
<td>3.724</td>
<td>1.211</td>
<td>11.454</td>
<td>0.022</td>
<td>15/22</td>
<td>7/24</td>
</tr>
<tr>
<td>Mebeverine</td>
<td>Mebeverine</td>
<td>Mebeverine</td>
<td>1.188</td>
<td>0.771</td>
<td>1.968</td>
<td>0.504</td>
<td>71/154</td>
<td>60/143</td>
</tr>
<tr>
<td>Otilonium</td>
<td>Baheer</td>
<td>Otilonium</td>
<td>1.761</td>
<td>1.192</td>
<td>2.404</td>
<td>0.033</td>
<td>102/36</td>
<td>30/36</td>
</tr>
<tr>
<td>Otilonium</td>
<td>Battalia</td>
<td>Otilonium</td>
<td>1.914</td>
<td>1.239</td>
<td>2.955</td>
<td>0.003</td>
<td>90/169</td>
<td>66/165</td>
</tr>
<tr>
<td>Otilonium</td>
<td>Girolle</td>
<td>Otilonium</td>
<td>1.994</td>
<td>1.232</td>
<td>2.227</td>
<td>0.005</td>
<td>58/157</td>
<td>56/156</td>
</tr>
<tr>
<td>Otilonium</td>
<td>Otilonium</td>
<td>Otilonium</td>
<td>2.035</td>
<td>1.430</td>
<td>2.779</td>
<td>0.000</td>
<td>158/353</td>
<td>105/361</td>
</tr>
<tr>
<td>Pinaverium</td>
<td>Deemont</td>
<td>Pinaverium</td>
<td>2.887</td>
<td>0.862</td>
<td>9.402</td>
<td>0.054</td>
<td>24/30</td>
<td>17/30</td>
</tr>
<tr>
<td>Pinaverium</td>
<td>Levy</td>
<td>Pinaverium</td>
<td>1.475</td>
<td>0.435</td>
<td>5.009</td>
<td>0.533</td>
<td>19/25</td>
<td>17/25</td>
</tr>
<tr>
<td>Pinaverium</td>
<td>Levy</td>
<td>Pinaverium</td>
<td>2.152</td>
<td>0.558</td>
<td>8.491</td>
<td>0.683</td>
<td>43/55</td>
<td>34/55</td>
</tr>
<tr>
<td>Pinaverium/s</td>
<td>Remes-Tsche Pinaveriums</td>
<td>Pinaverium/s</td>
<td>1.232</td>
<td>0.603</td>
<td>2.517</td>
<td>0.567</td>
<td>107/123</td>
<td>103/122</td>
</tr>
<tr>
<td>Trimebutine</td>
<td>Fielding</td>
<td>Trimebutine</td>
<td>0.502</td>
<td>0.217</td>
<td>1.615</td>
<td>0.306</td>
<td>13/30</td>
<td>17/30</td>
</tr>
<tr>
<td>Trimebutine</td>
<td>Mouhil</td>
<td>Trimebutine</td>
<td>0.829</td>
<td>0.212</td>
<td>3.502</td>
<td>0.104</td>
<td>12/20</td>
<td>9/20</td>
</tr>
<tr>
<td>Trimebutine</td>
<td>Mouhil</td>
<td>Trimebutine</td>
<td>0.829</td>
<td>0.212</td>
<td>3.502</td>
<td>0.104</td>
<td>12/20</td>
<td>9/20</td>
</tr>
<tr>
<td>Trimebutine</td>
<td>Overall</td>
<td>Trimebutine</td>
<td>1.659</td>
<td>0.319</td>
<td>8.336</td>
<td>0.000</td>
<td>715/1227</td>
<td>582/1288</td>
</tr>
</tbody>
</table>

Figure 4 Efficacy of antispasmodics on IBS global assessment. The vertical bars represent the difference in the response rates between antispasmodics (Treatment) and placebo. The white circles represent the OR and the horizontal lines the 95%CI. Overall response of each type of antispasmodic is represented by the black diamonds. Antispasmodics were effective on the global assessment of IBS symptoms (Overall).

Effect of antispasmodic agents in the treatment of Irritable Bowel Syndrome: Systematic review and meta-analysis

Figure 5 Efficacy of antispasmodics on pain relief. The vertical bars represent the difference in the response rates between antispasmodics (Treatment) and placebo. The white circles represent the OR and the horizontal lines the 95%CI. Overall response of each type of antispasmodic is represented by the black diamonds. Antispasmodics were effective on abdominal pain (Overall). Specifically by type of antispasmodics, only Alverine/s and Otilonium were effective.

For global assessment, only otilonium 2,035 (95% CI 1.49-2.77) and the alverine/simethicone combination 1.76 (95%CI 1.18-2.61) showed significant values. For pain relief, alverine/simethicone 1.48 (95% CI 1.00-2.19) and otilonium 1.83 (95% CI 1.43-2.34) demonstrated significant values. Recently, two abstracts that studied the combination of pinaverium bromide/simethicone came to interesting conclusions. They reported that pinaverium bromide/simethicone was effective for relieving abdominal pain in patients with active IBS\(^3\) and in improving bloating,\(^{24}\) but not visible abdominal distension. These results suggest an effect on visceral perception.\(^{24}\) However, the published abstracts did not contain the data necessary for the current meta-analysis. Therefore, the authors were contacted

Figure 6 Efficacy of antispasmodics on abdominal distension/bloating. The vertical bars represent the difference in the response rates between antispasmodics (Treatment) and placebo. The white circles represent the OR and the horizontal lines the 95%CI. Overall response of each type of antispasmodic is represented by the black diamonds. Antispasmodics were effective on abdominal distension/bloating (Overall). Specifically by type of antispasmodics, only the Pinaverium/s (Pinaverium+Simethicone) combination was effective.
for the completion of the required information. This is the first meta-analysis to incorporate the combination of anti-
spasmodics with an anti-foaming agent that may constitute
a new therapeutic option.

The combination pinaverium/simethicone resulted in an
OR of 1.45 (95% CI 1.11-3.91) for bloating. The effect with
the addition of simethicone was greater than that of the
antispasmodic alone, and was similar to the effect shown by
the alverine/simethicone combination. The NNT, calculated
from the systematic review or meta-analysis of randomized
clinical trials, is a valuable aid in making clinical decisions. 18
The NNT was recently included in a meta-analysis of medi-
cations to treat IBS. 25 Results showed a wide range of NNT
values; from 4 to 20 for 5-HT3 antagonists and 5HT4 agonists.
Other analyses also included antispasmodic medications21
with a wide NNT range; from 3 to 25 depending on the par-
ticular antispasmodic tested. We only calculated the NNT for
the global assessment and pain relief in those medications
with a significant OR and 95% CI. We found that the antispas-
modics with the lowest NNT to achieve global improvement
were oltionium and the alverine/simethicone combination;
an NNT of 7 for oltionium and 8 for the combination. For
pain relief, the NNT was 7 for oltionium and 11 for alver-
ine/simethicone. The NNT from a meta-analysis should be
viewed with caution, 26 since these data vary according to
patient baseline risk and this could be significantly different
among the trials included in the analysis.

The weaknesses in this meta-analysis were the variability
among the groups of patients across different trials and the
insufficiency of data such as treatment adherence and the
length of time during which each patient took the medi-
cations.

Conclusions

The lack of methodological coherence in trials published
before 1995 makes it difficult to reach final conclusions
about the efficacy of certain medications. Publication of the
Rome II and III trial design recommendations for functional
bowel disorders is an advance in the methodological qual-
ity of antispasmodic trials; however, few of them include
the recent diagnostic criteria in their design. Antispas-
modic agents are better than placebo for treating IBS, with
almost no serious adverse events. The alverine/simethicone
combination and oltionium showed a NNT of 7 to 11 with
significant results for global assessment and pain relief.
Pinaverium/simethicone also showed effectiveness in reliev-
ing bloating and had better results than pinaverium alone.
Future clinical investigations should include the combina-
tion of antispasmodics and anti-foaming agents to improve
the clinical effect of antispasmodics.

Financial disclosure

This study was supported by the Centro Regional para el
Estudio de las Enfermedades Digestivas (CREED), Hospital
Universitario Dr. José E. Gonzalez.

Conflict of interest

The authors have no conflicts of interest to declare.

Acknowledgements

We wish to thank Sergio Lozano Rodriguez, M.D. and Brenda
Esqueda M.D. for their help in reviewing the manuscript.

References

and clinical characteristics of the IBS subtypes according to
the Rome III criteria in patients from a clinical, multicentric trial.
A report from the Mexican IBS Working Group. Rev Gastroenterol
of bowel habit in irritable bowel syndrome in women: defining
Effect of antispasmodic agents in the treatment of Irritable Bowel Syndrome: Systematic review and meta-analysis

