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Abstract Gut microbiota is the community of live microorganisms residing in the digestive

tract. There are many groups of researchers worldwide that are working at deciphering the col-

lective genome of the human microbiota. Modern techniques for studying the microbiota have

made us aware of an important number of nonculturable bacteria and of the relation between

the microorganisms that live inside us and our homeostasis. The microbiota is essential for

correct body growth, the development of immunity, and nutrition. Certain epidemics affecting

humanity such as asthma and obesity may possibly be explained, at least partially, by alterations

in the microbiota. Dysbiosis has been associated with a series of gastrointestinal disorders that

include non-alcoholic fatty liver disease, celiac disease, and irritable bowel syndrome. The

present article deals with the nomenclature, modern study techniques, and functions of gut

microbiota, and its relation to health and disease.

© 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All

rights reserved.
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Microbiota intestinal en la salud y la enfermedad

Resumen La microbiota intestinal es la comunidad de microorganismos vivos residentes en

el tubo digestivo. Muchos grupos de investigadores a nivel mundial trabajan descifrando el

genoma de la microbiota. Las técnicas modernas de estudio de la microbiota nos han acercado

al conocimiento de un número importante de bacterias que no son cultivables, y de la relación

entre los microorganismos que nos habitan y nuestra homeostasis. La microbiota es indispen-

sable para el correcto crecimiento corporal, el desarrollo de la inmunidad y la nutrición. Las

alteraciones en la microbiota podrían explicar, por lo menos en parte, algunas epidemias de la

humanidad como el asma y la obesidad. La disbiosis se ha asociado a una serie de trastornos gas-

trointestinales que incluyen el hígado graso no alcohólico, la enfermedad celíaca y el síndrome

de intestino irritable. En el presente trabajo trataremos sobre la nomenclatura, las técnicas de
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estudio modernas, las funciones de la microbiota intestinal y la relación que tiene con la salud

y la enfermedad.

© 2013 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A.

Todos los derechos reservados.

Introduction

Our knowledge of the interesting relationship between human
beings and the microorganisms we harbor has greatly increased over
the past years. We no longer call these living entities «intestinal
flora», nor do we regard them as simply commensal. In fact, we
humans are «super organisms» governed in part by the microorgan-
isms living inside us.1 The aim of this review is to familiarize the
reader with the current terms used in the thriving field of the human
microbiota, in particular the gut microbiota, to know the profound
implications of diet and the environment on the normal and abnor-
mal microbiota, and to outline a panorama of the relation between
the microbiota and gastrointestinal diseases.

The literature review was carried out by consulting the PubMed
database of information encompassing the last 15 years, as well as
the studies presented at the 2012 Digestive Diseases Week in San
Diego, California, and the 2012 United European Gastroenterology
Week in Amsterdam.

Microbiota and other concepts

It is worthwhile to become familiar with a series of terms
that are currently employed in this field. The term micro-

biota refers to the community of living organisms residing
in a determined ecologic niche. The microbiota living in
the human gut is one of the most densely populated
communities,2 surpassing that of the soil, the subsoil, and
the oceans. In the mammalian large intestine the number
of microorganisms reaches 1012-1014, even more than the
number of human cells.3 The microbial ecosystem of the
intestine (gut microbiota) includes many native species that
permanently colonize in the gastrointestinal tract and a vari-
able series of microorganisms that only do so transitorily.
The whole of the microorganisms, their genes, and their
metabolites is called the microbiome. The human micro-
biome refers to the total population of microbes colonizing
the human body, including the gastrointestinal tract, geni-
tourinary tract, oral cavity, nasopharynx, respiratory tract,
and skin.4 The Human Microbiome Project has identified
approximately 30% of the gut microbiota5 and together with
the Metagenomics of the Human Intestinal Tract in Europe
and many other groups, is actively working to identify all of
the genes of the microbiota.

Dysbiosis is defined as the alterations in the gut micro-
biota and the adverse response of the host to these changes.
It has been associated with diseases as dissimilar as asthma,
chronic inflammatory disease, obesity, and non-alcoholic
steatohepatitis (NASH). 6---8

There have been several challenges involved in the study
of the microbiome in the past: not all the microorganisms
are easy to grow. Nevertheless, the modern techniques for
studying genetic material have revolutionized our under-
standing of the microbiome. Some components of the

Table 1 Concepts of microbiota.

Microbiota The community of living

microorganisms residing in a

determined ecologic niche

Microbiome The whole of the microorganisms,

their genes, and their metabolites

Human microbiome The total population of the

microbes that colonize the human

body: the gastrointestinal tract,

genitourinary tract, respiratory

tract, and skin

Dysbiosis Gut microbiota alterations

and the adverse host response

to these changes

Metagenome The complex formed by the

genetic material of the

microbiome and the host

Metagenomics The direct analysis of the genetic

material of bacteria from a

sample of the environment under

study

Metatranscriptomics The study of the transcribed total

RNA

Metaproteomics The study of proteins

Metabolomics The study of metabolic profiles

microbiota require special conditions for their growth in
culture media and therefore they went undetected or were
unknown in the past. For example, the colonic microbiota
have approximately 800 to 1,000 species per individual, but
62% of them were unknown and 80% of the bacteria identified
by metagenomics are regarded as unculturable.9

The concepts and advances in «metanomics» have
opened a window into the understanding of the gut micro-
biota 10 (Table 1):

• Metagenomics is the analysis of the genetic material of
bacteria taken directly from a sample of the environ-
ment that is being studied, making it possible to identify
bacteria that cannot be detected in culture media.

• Metatranscriptomics studies the transcribed total RNA.
• Metaproteomics focuses on protein levels.
• Metabolomics studies metabolic profiles.
• The metagenome is the complex formed by the host and

the microbiome.

Various classification systems of the biologic kingdoms
have been described (Table 2). In 1990 Woese introduced
the term «domain» to substitute «kingdom» as the highest
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taxonomic order, dividing all living beings into Bacteria,

Archaea, and Eucarya.11 The archaea, unicellular organ-
isms formerly grouped in the bacteria domain, possess a
sufficiently distinct genetic material from the bacteria to
be classified in a separate domain.12 A recent discovery
is the presence of members of the Archaea domain in
the gut microbiota, currently regarded as distinct from
the Bacteria domain. An example of the archaea is the
methane-producing Methanobrevibacter smithii, and in
recent studies it has been implicated in irritable bowel syn-
drome (IBS) with constipation.13

Ribosomal RNA (rRNA) is the most widely used macro-
molecule in bacterial phylogenetic and taxonomic studies.15

The sequencing of the variable regions of the gene that
encodes for the 16S subunit of rRNA (16S rRNA) identifies
the phylogenetic likeness of the bacteria and the archaea
and enables them to be classified without the use of culture
media. The genetic information obtained from the micro-
biome through the 16S rRNA is grouped into the so-called
operational taxonomic units, according to the similarity per-
centage of their 16S rRNA. When there is a 95% similarity
in the 16S rRNA, genus is being referred to, and when the
similarity is 97%, the reference is to species.16

About 50% of the fecal mass is made up of bacteria. This
population is composed of trillions of microorganisms that
belong to 4 main phyla: Firmicutes, Bacteroidetes, Acti-

nobacteria, and Proteobacteria, with a predominance of the
first two (90%).17

Functions of the microbiota

The gut microbiota has gone from being considered an
accompanying commensal to a «metabolic organ»,18 with
functions in nutrition, immunity regulation, and systemic
inflammation.19 Mammals that are raised germ free (GF)
have an abnormal body development with intestinal wall
atrophy, a low-weight heart, lungs and liver, and an imma-
ture immune system with low immunoglobulin levels.20

Backhed et al. showed that a group of mice had 40%
more body fat than their GF counterparts while fed the
same diet,21 and the GF mice were protected from obesity
caused by high-fat and high-sugar diets.22 When micro-
biota was transplanted from the cecum of normal mice into
the GF mice («conventionalizing»), there was a significant
increase in their body fat content.21 The gut microbiota
has enzymes that transform the complex polysaccharides of
the diet that the human intestine cannot digest or absorb,
into monosaccharides and short-chain fatty acids (SCFA),

Table 2 Two of the classifications of living entities.

Woese CR et al11 Whittaker RH14

Domain Kingdom Lineage Kingdom

Archaea Archaea Prokaryote Monera

Bacteria Bacteria Eukaryote Fungi

Eucarya Protista Protista

Plantae Plantae

Fungi Animalia

Animalia

principally acetic, propionic, and butyric acid. The first two
are absorbed into the portal circulation and the third is
used by the colonocytes as a source of energy. The SCFA
can be transported to the liver to be used in the synthesis of
lipids; as a matter of fact, it is estimated that the calories
derived from this bacterial digestion make up about 10% of
all the energy we absorb.23 The quantity of SCFA in the colon
and blood is important for host immunoregulation. Some
studies report positive SCFA effects in patients with inflam-
matory alterations of the bowel; in fact, those patients have
much lower SCFA concentrations.24---26 In addition, it appears
that the microbiota is capable of modulating the genes that
affect the disposition of energy in the adipocytes.2 The
microbes and vertebrates evolved together over thousands
of years and the normal functioning of the digestive and
immunologic systems depends on the presence of the sym-
biotic microbiota.27

Factors that influence the microbiota

From an evolutionary perspective, the organisms that make
up the microbiota in mammals are determined by the types
of nutritional sources, and so omnivores, carnivores, and
herbivores have different profiles.28 The characteristics of
diet, together with genetic factors, influence the predomi-
nance of some microorganisms over others.29 After only one
day of a Western diet (high in fat and sugar and low in
plant polysaccharides), the mice showed changes in their
microbial composition and their metabolic pathways and in
2 weeks they had developed greater adiposity.30 The abun-
dance or scarcity of food will determine the presence or not
of bacterial species that reproduce well when there is unlim-
ited availability of food, or of the most efficient species
when the nutrients are scare.29,31 Mice fed a Western diet
show increased Firmicutes and reduced Bacteroidetes.30

In utero, the human being does not have a microbiota.
Upon birth, the gastrointestinal tract colonizes immediately.
Even the type of birth (natural or cesarean) and the type of
food (breast milk or formula) have been shown to produce
differences in the gut microbiota.32 Microbial fecal profiles
of nursing infants show a marked similarity to the bacterial
profiles of the birth canal and breast milk.33 During infancy
and throughout life, the microbial composition also changes
according to age and diet.34 In the first 2 years of life, the
microbiota is dominated by biphidobacteria.35 Afterwards,
the microbial composition diversifies and reaches its maxi-
mum complexity in the adult, with hundreds of phylotypes
dominated by Bacteroidetes and Firmicutes.36

Even when the gut microbiota changes over the years, the
environment and the maternal microbiota during birth and
breast-feeding appear to remain very important factors in
the future development of the microbiota. Once the micro-
biota is established in an individual, it is stable in relation to
time.37 In humans, the bacterial communities are more sim-
ilar among members of the same family than with unrelated
individuals.38

Arumugam et al. recently postulated the concept of the
enterotypes, with the idea of classifying the different micro-
biota of the human gut, based on the composition of their
bacterial communities and according to the abundance of
the diverse bacterial genuses.39 This could facilitate the
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association of the different enterotypes with the diverse
conditions associated with dysbiosis. Studies such as these
help to untangle the data that is available to us and to cor-
relate the different microbial populations with the clinical
entities that are the product of dysbiosis.

However, we must be careful when drawing conclusions
and always think of the changes in the microbiota as the
cause and not the consequence of the physiologic modifi-
cations of the organisms. For example, Purna et al. showed
that the effects on the microbiota associated with the intro-
duction of fiber into the diet could be related to bowel
transit velocity and not to the fiber itself, given that the
same changes were reproduced in the microbiota when using
inert laxatives.40

Microbiota and immunity

The gut microbiota has an important effect on the human
immune response. In 1989, Strachan suggested that the
decrease in the microbial load due to improved standards of
hygiene in the developed countries could lead to an increase
in autoimmune diseases.41 Diet and its effects on the gut
microbiota and on the immune response have been postu-
lated as possible explanations for the increase in incidence
of inflammatory diseases such as asthma and type I dia-
betes in the developed countries.27 New findings about the
gut microbiota and its immunomodulatory capacity coin-
cide with the epidemiologic data that connect obesity and
asthma, or obesity and type I diabetes.42,43

The intestinal mucosa performs functions of adaptive
immunity because its immune system has the capacity to
respond to an infinite number of antigens, but there is
also the innate immunity that is the recognition of spe-
cific antigens and is inherited phylogenetically from the
plants to the vertebrates. These antigens have been called
pathogen-associated molecular patterns (PAMPs) and they
include lipids, lipopolysaccharides (LPS), and lipoproteins.
The PAMPs are recognized by the pattern-recognition recep-
tors (PRRs). The interaction between the PRRs and the PAMPs
induces cytokine and interferon production. Among oth-
ers, the PRRs include the Toll-like receptors (TLRs) that
are transmembrane receptors. Various PAMPs that are lig-
ands of the TLRs contain lipids, which are indispensible for
their agonist activity, such as the bacterial LPS (bacterial
endotoxins) that are TLR-4 ligands. The LPS are essen-
tial components of the bacterial cell wall. Even though
they are not strictly factors of bacterial virulence, they
awaken an intense innate immunologic response. The TLRs
are expressed in the cells that are in charge of innate immu-
nity, such as the macrophages, epithelial cells, endothelial
cells, adipocytes, and in the parenchyma of some organs,44

but they are also expressed in the cells of the adaptive
immunity cells that include B cells, mast cells, T cells,
and the dendritic cells, which are key to the initiation of
this adaptive immunity.44 The dendritic cells are a type
of antigen-presenting cell. They are located in the lamina
propria, they extend their appendages among the mucosal
epithelial cells and display molecular patterns of pathogenic
and commensal microorganisms.45 The signals arising from
the TLRs induce the dendritic cells to differentiate and pro-
duce cytokines.46 The dendritic cells present the antigens to

the T cells and are implicated in defense functions, as well
as in immunologic tolerance to foods and microorganisms.47

When the LPS bind to the TLR-4, an intense inflammatory
response is produced that damages the white tissues. The
LPS are detected in the circulation of healthy individuals
and their levels increase after the ingestion of energy-rich
foods.48

Until a short while ago, adipose tissue was regarded as a
mere storage compartment, but the adipocyte is an active
adipokine-producing endocrine cell.49 In obesity, in addition
to the increased adipocytic volume, the adipose tissue is
infiltrated by macrophages. The macrophages have 2 sub-
populations: M1 that produce inflammatory cytokines and
M2 that generate anti-inflammatory products.50 The TLRs
promote the M1 phenotype with the consequent increase in
proinflammatory cytokines.

The «hygiene theory» supposes that the excess of clean-
liness and the reduced exposure to bacteria at an early age
impedes the correct development of the immunoregulatory
mechanisms that prevent inappropriate T cell responses and
the later inflammatory diseases.27 Hansen et al. demon-
strated that GF mice that were «conventionalized» at the
age of 3 weeks with the cecal content of normal mice, had
permanently modified the composition of their gut micro-
biota and developed a proinflammatory immune response.
In other words, the short postnatal germ-free period had
permanent adverse effects on immunity.51 Interestingly, if
the conventionalization is carried out at the first week of
life, these effects are not reproduced, leading to the idea
that there is a window of time in which immunity can be
permanently modified.

There are radical differences between the gut micro-
biota of children in Africa and children in urban Europe.
The children from Burkina Faso (Africa) have a diet that
is very high in fiber and their microbiota has large quan-
tities of Bacteroidetes that hydrolyze the complex plant
polysaccharides, and they have a much lower abundance of
Firmicutes than the microbiota of a European cohort.52 It is
interesting to know that allergies and asthma are practically
nonexistent in rural African communities.

There is accumulating evidence pointing to an alteration
of the gut microbiota in persons with allergies and asthma. 24

Children that live on farms have a lower incidence of asthma
than city children.53

Microbiota and metabolism

Obesity is the result of the increase in the consumption of
foods that are high in energy, sugar, and saturated fats. How-
ever, it seems that the simple increase in the ingestion of
calories does not completely explain the current obesity epi-
demic. GF mice do not gain weight when they are exposed
to high-fat and high-carbohydrate diets, leading to the sup-
position that diet is not sufficient for inducing obesity.

An «obese-type» human microbiota has been described
that is associated with excess weight and metabolic syn-
drome, with an increase in the Firmicutes/Bacteroidetes

ratio.54 The Bifidobacteria and Bacteroides spp. appear to
be protectors against the development of obesity.55 Obesity
could have a microbial component with probable therapeu-
tic implications.
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The colonization of GF mice with normal mouse micro-
biota produces a dramatic increase in fat in 10-14 days,
despite reduced food consumption. The capacity to ferment
dietary carbohydrates varies widely among microorganisms
and evidence points to a greater efficiency of the gut micro-
biota of overweight individuals to degrade non-digestible
vegetable carbohydrates.23 Turnbaugh et al.23 demonstrated
that genetically obese mice (ob/ob) have 50% fewer Bac-

teroidetes and more Firmicutes than their thin siblings.
They proved that the microbiota of the obese mice released
more calories during digestion than that of the thin mice.
The obesity-causing phenotype may be transmissible: the
implantation of the obesogenic gut microbiota in GF mice
results in increased adiposity in the receptor mouse.23

When normal weight mice are given a typical high-
calorie Western diet for 8 weeks (an accepted mechanism
for producing obesity in mice), a marked reduction
in Bacteroidetes and a clear rise in Firmicutes is also
observed.56 Jumpertz et al. administered diets of varied
caloric content to 12 thin human subjects and 9 obese ones
and compared the ingested calories with the fecal calories.
The modification in the microbiota secondary to diet, with a
20% increase in Firmicutes and the corresponding reduction
in Bacteroidetes, was associated with an increase in energy
recovery of approximately 150 kcal.57

These findings have led to the hypothesis that the micro-
biota of obese individuals may be more efficient in energy
extraction than the microbiota of thin individuals.

It is known that situations occurring around the time of
birth increase the risk for developing obesity, diabetes, and
cardiovascular disease in the adult stage 58 and the initial
colonization could be very important for determining the
final composition of the permanent microbiota in adults. 59

The following are some of the many metabolic mech-
anisms that associate the microbiota with obesity and its
related disorders, such as diabetes and fatty liver:

- Bacterial fermentation of dietary polysaccharides that
cannot be digested by the host, with the consequent
production of monosaccharides and SCFA. The SCFA
are substrates of the colonocytes and precursors of
cholesterol and fatty acids, and they are substrates
of gluconeogenesis in the liver, all of which optimizes the
exploitation of the energy of the diet.

- The SCFA bind to specific intestinal endocrine cell
receptors (GRP43 and GRP41) that increase the YY pep-
tide, which delays bowel transit, increasing nutrient
absorption60 and increasing the levels of leptin, an orexi-
genic hormone.61

- The microbial regulation of some of the host genes that
promote the deposit of lipids in the adipocytes.21

- The reduction of the intestinal expression of fasting-
induced adipose factor (FIAF) also known as the type IV
factor similar to angiopoietin that is a circulating inhibitor
of lipoprotein lipase, which favors the fatty acid uptake
and the expansion of the adipose tissue. The FIAF can
also induce coactivator 1 of the peroxisome proliferator-
activated receptor gamma that regulates the expression
of the enzymes in charge of fatty acid oxidation.22 In fact,
the GF mice that lack the 2 FIAF alleles have the same
quantity of body fat as the conventional mice,21 and so it is

believed that the FIAF can be a mediator of the microbial
regulation of the peripheral fat reserves.62

- The obese mice have an increase in the methanogenic
archaea, which is associated with a lower partial hydro-
gen pressure, optimizing the bacterial fermentation
velocity.63,64

- The hepatic increase in the portal circulation’s monosac-
charide uptake activates key transcriptional factors, such
as ChREBP, that regulate lipogenesis.65

- The microbiota increases the vascularization induced by
inflammation and the blood flow of the mucosa that, in
turn, increases nutrient absorption.66

- Gut microbiota is capable of promoting a state of low-
grade systemic inflammation, insulin resistance, and of
increasing the cardiovascular risk through mechanisms
that include exposure to bacterial products, particularly
the LPS derived from Gram-negative bacteria. This has
been called metabolic endotoxemia.67 Clemente-Postigo
et al. recently demonstrated an association between post-
prandial triglyceride levels and an increase in bacterial
endotoxins after a high-fat diet.68 Changes in the gut
microbiota, the increase in the intestinal permeability,
and endotoxemia possibly play an important role in the
development of a low-grade chronic inflammatory state
in the host that contributes to the development of obe-
sity and chronic metabolic diseases such as non-alcoholic
fatty liver disease (NAFLD).67,69

- In recent years, importance has been taken away from
BMI as a metabolic syndrome predictor and the concept
that visceral fat is responsible for this problem has gained
strength. Visceral fat secretes close to 250 proteins,2

such as visceral growth factor, IL-6, the plasminogen
activator inhibitor, TNF-� and reactive C protein, all of
which are implicated in inflammation.70 This leads to the
idea that obesity with its metabolic consequences and
accompanying diseases could have an important microbial
component, with probable therapeutic implications.

Microbiota and gastrointestinal diseases

Irritable bowel syndrome

Recent studies begin to profile the association between
dysbiosis and gastrointestinal diseases. Important differ-
ences have been demonstrated in the microbiota of patients
with IBS compared with healthy controls; the Firmi-

cutes/Bacteroidetes relation was shown to be twice as high
in the IBS patients (P < 0.0002).71 The patients with IBS
have fewer Lactobacillus and Bifidobacterium spp. than the
healthy controls.72 The bacteria mentioned before bind to
epithelial cells and inhibit the adherence of pathogenic
bacteria, they do not produce gas upon fermenting the car-
bohydrates, and they inhibit the Clostridia spp.73 Probiotics
modify the colonic fermentation and stabilize the colonic
microbiota. Various studies with probiotics have shown an
improvement in flatulence and abdominal bloating.74 There
are interesting findings in the recent studies on IBS in adults
and children. Saulnier et al. found a significantly higher
percentage of proteobacteria in children with IBS and they
could classify the IBS subtypes based on a limited series of
bacteria. Interestingly, a new microbe similar to Ruminococ-

cus was associated with IBS.75
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Studies carried out over the past decade identified an
association between IBS and the bacterial overpopulation
detected through breath tests with the administration of
oral lactulose or glucose. In IBS patients, Pimentel et al.
demonstrated a 35% symptom improvement upon admin-
istering a non-absorbable antibiotic (neomycin) compared
with an 11.4% improvement with a placebo. When only the
patients in whom the elimination of the bacterial overpopu-
lation was demonstrated after antibiotic use were taken into
account, there was improvement in 75% of those patients.76

This line of investigation has been taken with caution due
to the difficulties in diagnosing bacterial overpopulation
through breath tests. In addition, the use of antibiotics
with little absorption, such as neomycin, is not exempt
from secondary effects. More recently, 2 phase III stud-
ies that were double-blinded and controlled with placebo
(TARGET 1 and TARGET 2) were conducted on patients with
IBS without constipation and treated with rifaximin, a non-
absorbable antibiotic, at a dose of 550 mg 3 times a day for
2 weeks, to evaluate IBS symptom improvement. Significan-
tly, more patients in the rifaximin group had a better overall
improvement in IBS symptoms, 40.7% vs 31.7%, P = 0.01, and
improvement in the sensation of abdominal bloating, 40.2%
vs 30.3%, P = 0.001.77

The studies that show the existence of a gut-brain-
microbiota axis are surprising.78 It has been shown that
the microbial content of the postnatal gastrointestinal tract
in mice is critical for the development of adequate responses
to stress in later stages of life. It has also been shown that
there is a critical window in the early stages of life in which
colonization should occur in order to ensure normal devel-
opment of the hypothalamic-pituitary-adrenal axis.79

Methane (CH4) is one of the gases present in the human
gut and is produced by anaerobic bacterial fermentation.
CH4 has been described as being able to affect bowel tran-
sit velocity, reduce the secretion of serotonin, and has
been associated with IBS, diverticulosis, and colon cancer.80

The main CH4-producing microorganism is Methanobrevibac-

ter smithii, belonging to the Archaea domain.81 Prolonged
bowel transit times have been demonstrated in CH4-
producing adults.82 A recent study evaluated CH4 production
in 629 patients with intestinal symptoms through a glucose
breath test and 32.3% of the patients were CH4 producers.
The excretion of this gas could be significantly correlated
with chronic constipation and it was higher in patients with
constipation compared with healthy individuals and much
higher than in the patients with diarrhea.83

Crohn’s disease

Many studies have suggested the presence of dysbiosis in
the intestine of patients with Crohn’s disease, compared
with healthy individuals.84 Healthy twins tend to have a very
similar microbiota, but when one of the twins has Crohn’s
disease, the intestinal composition changes greatly, espe-
cially in patients with ileal inflammation.85

Celiac disease

A marker of active celiac disease is the production of
cytokines by intestinal T lymphocytes in individuals that are
carriers of certain class II MHC alleles. It has been suggested

that dysbiosis is another risk factor for celiac disease. In
fact, a «Swedish celiac disease epidemic» was described86

and bacterial candidates have been isolated as etiologic fac-
tors that were later able to be isolated in patients born
during the epidemic. Dysbiosis and the bacteria associated
with celiac disease can be a risk factor for the develop-
ment of the disease, whether it is by direct influence in
the immune responses of the mucosa or upon increasing the
inflammatory response to gluten.87

Non-alcoholic steatohepatitis/non-alcoholic fatty
liver disease

Upon conventionalizing GF mice from the cecum of normal
mice, Backhed et al. demonstrated an increase in fat in the
liver.21 NASH and NAFLD have been associated with bacterial
overpopulation and increased intestinal permeability, even
though not all studies are concordant.62

Various bacterial products can be potentially hepa-
totoxic: phenols, ammonium, ethanol, and others.88 An
increase in ethanol production has been described in obese
patients.89 It is thought that the main bacterial product
implicated in NASH and NAFLD is LPS, the active component
of the endotoxins of the bacterial wall, released through
bacterial death in the intestine. LPS goes through capillary
translocation by means of a TLR-4-dependent mechanism
and is absorbed together with dietary lipids.90 LPS absorp-
tion in turn activates TNF-�, IL-1, and IL-6 production. The
signals that TLR-4 awakens promote insulin resistance, hep-
atic steatosis, inflammation, and fibrogenesis.88

Chronic infusion of LPS at low doses in mice causes
obesity and an increase in body fat percentage, insulin
resistance, macrophage infiltration into the adipose tissue,
and hepatic steatosis.91 Studies in humans have also shown
that endotoxemia is a risk factor for the development of
NASH/NAFLD. Two studies on patients with NAFLD diagnosed
through biopsy showed an increase in endotoxemia when
compared with healthy individuals.92,93

In conclusion, modern analysis of the bacterial genome
is of great interest and has opened a field of investiga-
tion that can explain the close relationship between the
microbiome and humans, and can help answer the questions
about modern «epidemics»: the autoimmune, allergic, and
metabolic diseases; but it especially offers us the possibil-
ity of attempting to revert them through the manipulation
of the components of the microbiota. Evidence shows that
the microbiota is stable over time and that some effects
of early-stage human colonization are irreversible. And so
these questions arise: Do we have the capacity to prevent
alterations in the microbiota that are due to an excess of
hygiene and the lack of contact with healthy microorgan-
isms? Can we manipulate the microbiota of an individual in
a permanent or at least long-term manner?
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