Información de la revista
Vol. 89. Núm. 4.
Páginas 555 (Octubre - Diciembre 2024)
Vol. 89. Núm. 4.
Páginas 555 (Octubre - Diciembre 2024)
Letter to the Editor
Acceso a texto completo
Response to the Letter to the Editor by Castrillón-Lozano JL, et al. “Application of artificial intelligence regarding the performance of the predictive criteria of the American Society for Gastrointestinal Endoscopy in the diagnosis of choledocholithiasis”
Respuesta a Castrillón-Lozano JL, et al. "Aplicación de la inteligencia artificial respecto al desempeño de los criterios predictivos de la Sociedad Americana de Endoscopía Gastrointestinal en el diagnóstico de coledocolitiasis"
Visitas
1174
C. Ovalle-Chao
Autor para correspondencia
christian.ovalle.chao@gmail.com

Corresponding author at: Calle Pablo Moncayo 520, Colonia Colinas de San Jerónimo. Monterrey, Nuevo León. CP 64630, Mexico. Tel.: 811 6195 342.
Departamento de Cirugía General, Hospital Metropolitano “Dr. Bernardo Sepúlveda”, Monterrey, Nuevo León, Mexico
Este artículo ha recibido
Información del artículo
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Texto completo

We appreciate the interest in our original article, “Performance of the predictive criteria of the American Society for Gastrointestinal Endoscopy in the diagnosis of choledocholithiasis at a secondary care public hospital in the state of Nuevo León, Mexico”,1 shown by Castrillón-Lozano et al. Our article evaluated the performance of the predictive criteria proposed by the American Society for Gastrointestinal Endoscopy (ASGE2 in 2019 for predicting choledocholithiasis at a secondary care public hospital that does not have access to magnetic resonance cholangiography or endoscopic ultrasound.

Recent advances in artificial intelligence (AI) have given rise to generative models capable of providing accurate and detailed text-based responses to written prompts (“chats”). These models have obtained high scores on standardized medical exams.3

Generative AI is a promising complement to human cognition in the diagnostic process. Nevertheless, agencies, including the US Food and Drug Administration (FDA), have currently issued important warnings, with respect to these modern differential diagnosis-generating models.4 Research, such as that by Castrillón-Lozano et al., aids in investigating possible biases and diagnostic blind spots in the generative models of AI.

Financial disclosure

No financial support was received in relation to this letter.

Conflict of interest

The authors declare that there is no conflict of interest.

References
[1]
C. Ovalle-Chao, D.A. Guajardo-Nieto, R.A. Elizondo-Pereo.
Performance of the predictive criteria of the American Society for Gastrointestinal Endoscopy in the diagnosis of choledocholithiasis at a secondary care public hospital in the State of Nuevo León, Mexico.
Rev Gastroenterol Mex, 88 (2023), pp. 322-332
[2]
J.L. Buxbaum, S.M. Abbas-Fehmi, S. Sultan, et al.
“ASGE guideline on the role of endoscopy in the evaluation and management of choledocholithiasis.”.
Gastrointest Endosc, 89 (2019), pp. 1075-1105.e15
[3]
T.H. Kung, M. Cheatham, A. Medenilla, et al.
Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models.
[4]
Z. Kanjee, B. Crowe, A. Rodman.
Accuracy of a generative artificial intelligence model in a complex diagnostic challenge.
JAMA., 330 (2023), pp. 78-80
Descargar PDF
Idiomas
Revista de Gastroenterología de México
Opciones de artículo
Herramientas